加入收藏 | 设为首页 | 会员中心 | 我要投稿 西双版纳站长网 (https://www.0691zz.com.cn/)- 数据计算、IT业界、服务器、教程、云日志!
当前位置: 首页 > 云计算 > 正文

新冠病毒药物研发争分夺秒,阿里高性能计算如何出力?

发布时间:2021-06-07 12:59:00 所属栏目:云计算 来源:互联网
导读:阿里妹导读:新冠状病毒疫情发生后,为了帮助抗攻击疫情,阿里云免费向全球公共科研机构提供高性能计算、SCC超级计算集群和CPU/GPU机器、云超算及AI等技术。 近期,不少研究机构和高校在阿里云上E-HPC云超算上进行药物研发相关的数值计算,阿里云超算团队提
阿里妹导读:新冠状病毒疫情发生后,为了帮助抗攻击疫情,阿里云免费向全球公共科研机构提供高性能计算、SCC超级计算集群和CPU/GPU机器、云超算及AI等技术。
近期,不少研究机构和高校在阿里云上E-HPC云超算上进行药物研发相关的数值计算,阿里云超算团队提供了技术支持与跟进。
本文主要介绍药物筛选阶段,E-HPC云超算如何帮助研发人员实现大量小分子库的快速并发处理。同时,介绍全球健康药物研发中心GHDDI算力和成果共享开放平台的阿里云解决方案。
病毒、药物研发和高性能计算
一款药物的诞生周期极其漫长,从最早的新药研发到上市,至少要经历10年。
 
在疫情这般分秒必争的背景下,时间尤为珍贵。因此在本次过程中,许多科学家会尝试从已有的药物里面,找到能治疗新冠的药,免去了后续大量审批上市等步骤。
化合物发现阶段,以往的方法是通过大量实验做筛选,发现可能适合的化合物。如今,科学家尝试通过机器模拟分子化合物与靶点的相互作用,从而筛选出可能有效的化合物做实验。
在此过程中,高性能计算(HighPerformance Computing,简称HPC),常被称为“超算”,是现代药物研发必不可少的支持。
云计算的兴起更是改变了科学家获取算力、享受超算服务的方式。比如阿里云E-HPC 云超算产品,能够让科学家自助在云上搭建高性能集群系统,满足药物研发人员对计算平台的需求。
此外,云上算力规模庞大且灵活,科学家可以按需购买,而不用担心被算力规模限制了研发速度。
那么,具体病毒、药物研发和高性能计算之间具体联系几何?我们将从从病毒如何在宿主复制扩散开始讲起,到药物抑制方法举例,最后给出高性能计算在药物研发的作用。
病毒和药物研发
病毒是由核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,如下图烟草花叶病毒所示。因为是非细胞的,无法通过细胞分裂的方式来完成数量增长,它们通过进入宿主细胞并利用宿主细胞内的代谢工具来合成自身的拷贝,并完成病毒的组装[1]。冠状病毒(CoV)是一种是一组高度同源的,单链正译RNA病毒,其具有以上的病毒特征,可引起多种严重程度不同的呼吸道,肠道,肝脏和神经系统疾病,在过去的12年中出现的两种新型的,即严重的急性呼吸系统综合症(SARS-CoV)和中东呼吸系统综合症(MERS-CoV)[2],以及目前肆掠的COVID-19都属于这种病毒。
 
 
COVID-19病毒
 
某病毒蛋白分子结构[4]
病毒进入宿主细胞后,病毒基因组完成复制、转录(除了正译RNA病毒外)以及病毒蛋白质合成,然后组装行成更多数目的病毒,其生命流程如下图所示(无包膜病毒简易示图)。
 
利用药物干扰病毒复制过程,可以有效抑制病毒对机体的伤害。例如,病毒蛋白在合成过程中,需要蛋白酶的介入,如3cl蛋白酶和ProPL蛋白酶,抑制蛋白酶的功能就是抑制病毒的方法之一。蛋白酶上能够被其它物质(配体、药物)识别或结合的结构,被称为靶点(BiologicalTarget)。找到能够与病毒的蛋白酶合适的靶点结合的配体(小分子药物),通过药物的作用改变蛋白酶的立体结构,进而改变其功能,阻碍病毒蛋白合成,导致病毒无法复制,实现抑制病毒复制的效果。[3]
药物研发与高性能计算
药物研发是一个非常复杂和非常耗时的过程,药物筛选只是流程前期一个环节。例如,之前提的寻找跟蛋白病毒酶结合的小分子,由于存在不同种类或研究机构的配体(小分子)库,配体(小分子)库数量巨大,每个配体库的配体数量成千上万,甚至更大,通过实验方式一一测试验证是不切合实际的。通过计算机数值模拟进行筛选,对不同配体的结合效果进行打分,筛选出打分高且结合模式合理的一些配体作为候选药物进行实验验证,能够有效加速药物的研究进程。
由于配体库巨大,如果在有限时间完成筛选,也是一个巨大的挑战。例如,配体库有10,000个候选配体,每个配体平均处理时间为1.5个小时,总共需要15,000 个小时(625天)。因此,为在规定时间内算完,需要具备以下条件:
拥有强大计算能力的计算平台;
大容量存储,用于存放处理数据和计算结果;
此外,为了保证筛选计算能够高效、顺利完成,还需要计算服务,包括:
集群软件运行环境,保证在多机环境下软件运行,以及数据访问;
能够支持多任务在多机环境下并发处理的并行方案。
除计算平台外,药物筛选还需要高性能应用软件。药物筛选模拟计算包括Docking和分子动力学计算:Docking 耗时相对较小,常用于大量配体的初步筛选,主要软件有dock6、Autodock Vina、Glide 等;分子动力学模拟计算比较耗时,测试作用的时间变化,用于对Docking初选结果进一步分析,主要软件有Gromacs,Namd,Amber等,GPGPU加速效果一般比较明显。

(编辑:西双版纳站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读