加入收藏 | 设为首页 | 会员中心 | 我要投稿 西双版纳站长网 (https://www.0691zz.com.cn/)- 数据计算、IT业界、服务器、教程、云日志!
当前位置: 首页 > 运营中心 > 建站资源 > 经验 > 正文

图卷积网络到底怎么做,这是一份极简的Numpy实现

发布时间:2019-02-22 19:29:10 所属栏目:经验 来源:机器之心编译
导读:由于图结构非常复杂且信息量很大,因此对于图的机器学习是一项艰巨的任务。本文介绍了如何使用图卷积网络(GCN)对图进行深度学习,GCN 是一种可直接作用于图并利用其结构信息的强大神经网络。 本文将介绍 GCN,并使用代码示例说明信息是如何通过 GCN 的隐藏
副标题[/!--empirenews.page--]

由于图结构非常复杂且信息量很大,因此对于图的机器学习是一项艰巨的任务。本文介绍了如何使用图卷积网络(GCN)对图进行深度学习,GCN 是一种可直接作用于图并利用其结构信息的强大神经网络。

本文将介绍 GCN,并使用代码示例说明信息是如何通过 GCN 的隐藏层传播的。读者将看到 GCN 如何聚合来自前一层的信息,以及这种机制如何生成图中节点的有用特征表征。

何为图卷积网络?

GCN 是一类非常强大的用于图数据的神经网络架构。事实上,它非常强大,即使是随机初始化的两层 GCN 也可以生成图网络中节点的有用特征表征。下图展示了这种两层 GCN 生成的每个节点的二维表征。请注意,即使没有经过任何训练,这些二维表征也能够保存图中节点的相对邻近性。

图卷积网络

更形式化地说,图卷积网络(GCN)是一个对图数据进行操作的神经网络。给定图 G = (V, E),GCN 的输入为:

  • 一个输入维度为 N × F⁰ 的特征矩阵 X,其中 N 是图网络中的节点数而 F⁰ 是每个节点的输入特征数。
  • 一个图结构的维度为 N × N 的矩阵表征,例如图 G 的邻接矩阵 A。[1]

因此,GCN 中的隐藏层可以写作 Hⁱ = f(Hⁱ⁻¹, A))。其中,H⁰ = X,f 是一种传播规则 [1]。每一个隐藏层 Hⁱ 都对应一个维度为 N × Fⁱ 的特征矩阵,该矩阵中的每一行都是某个节点的特征表征。在每一层中,GCN 会使用传播规则 f 将这些信息聚合起来,从而形成下一层的特征。这样一来,在每个连续的层中特征就会变得越来越抽象。在该框架下,GCN 的各种变体只不过是在传播规则 f 的选择上有所不同 [1]。

传播规则的简单示例

下面,本文将给出一个最简单的传播规则示例 [1]:

  1. f(Hⁱ, A) = σ(AHⁱWⁱ)  

其中,Wⁱ 是第 i 层的权重矩阵,σ 是非线性激活函数(如 ReLU 函数)。权重矩阵的维度为 Fⁱ × Fⁱ⁺¹,即权重矩阵第二个维度的大小决定了下一层的特征数。如果你对卷积神经网络很熟悉,那么你会发现由于这些权重在图中的节点间共享,该操作与卷积核滤波操作类似。

简化

接下来我们在最简单的层次上研究传播规则。令:

  • i = 1,(约束条件 f 是作用于输入特征矩阵的函数)
  • σ 为恒等函数
  • 选择权重(约束条件: AH⁰W⁰ =AXW⁰ = AX)

换言之,f(X, A) = AX。该传播规则可能过于简单,本文后面会补充缺失的部分。此外,AX 等价于多层感知机的输入层。

1. 简单的图示例

我们将使用下面的图作为简单的示例:

一个简单的有向图。

使用 numpy 编写的上述有向图的邻接矩阵表征如下:

  1. A = np.matrix([ 
  2.     [0, 1, 0, 0], 
  3.     [0, 0, 1, 1],  
  4.     [0, 1, 0, 0], 
  5.     [1, 0, 1, 0]], 
  6.     dtype=float 

接下来,我们需要抽取出特征!我们基于每个节点的索引为其生成两个整数特征,这简化了本文后面手动验证矩阵运算的过程。

  1. In [3]: X = np.matrix([ 
  2.             [i, -i] 
  3.             for i in range(A.shape[0]) 
  4.         ], dtype=float) 
  5.         X 
  6. Out[3]: matrix([ 
  7.            [ 0.,  0.], 
  8.            [ 1., -1.], 
  9.            [ 2., -2.], 
  10.            [ 3., -3.] 
  11.         ]) 

2. 应用传播规则

我们现在已经建立了一个图,其邻接矩阵为 A,,输入特征的集合为 X。下面让我们来看看,当我们对其应用传播规则后会发生什么:

  1. In [6]: A * X 
  2. Out[6]: matrix([ 
  3.             [ 1., -1.], 
  4.             [ 5., -5.], 
  5.             [ 1., -1.], 
  6.             [ 2., -2.]] 

(编辑:西双版纳站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读